Sisukord:
- Samm: vajalik riistvara:
- 2. samm: riistvara ühendamine:
- 3. samm: temperatuuri mõõtmise kood:
- 4. samm: rakendused:
Video: Temperatuuri mõõtmine LM75BIMM ja Raspberry Pi abil: 4 sammu
2024 Autor: John Day | [email protected]. Viimati modifitseeritud: 2024-01-30 08:48
LM75BIMM on digitaalne temperatuuriandur, mis on ühendatud termilise valvekoeraga ja millel on kahe juhtmega liides, mis toetab selle tööd kuni 400 kHz. Sellel on programmeeritava piirangu ja hüsteriga ülekuumenenud väljund.
Selles õpetuses on demonstreeritud LM75BIMM andurimooduli liidestamist vaarika pi -ga ja illustreeritud on ka selle programmeerimine Java keelt kasutades. Temperatuuri väärtuste lugemiseks oleme kasutanud vaarika pi koos I2C adapteriga. See I2C adapter muudab ühenduse andurimooduliga lihtsaks ja usaldusväärsemaks.
Samm: vajalik riistvara:
Eesmärgi saavutamiseks vajalikud materjalid sisaldavad järgmisi riistvarakomponente:
1. LM75BIMM
2. Vaarika Pi
3. I2C kaabel
4. I2C Shield vaarika pi jaoks
5. Etherneti kaabel
2. samm: riistvara ühendamine:
Riistvara ühendamise jaotis selgitab põhimõtteliselt anduri ja vaarika pi vahel vajalikke juhtmestiku ühendusi. Soovitud väljundi mis tahes süsteemiga töötamisel on põhivajadus õigete ühenduste tagamine. Seega on vajalikud ühendused järgmised:
LM75BIMM töötab üle I2C. Siin on näide ühendusskeemist, mis näitab, kuidas anduri iga liidest ühendada.
Valmis plaat on konfigureeritud I2C liidese jaoks, seega soovitame seda ühendamist kasutada, kui olete muidu agnostik.
Kõik, mida vajate, on neli juhtmest! Vaja on ainult nelja ühendust Vcc, Gnd, SCL ja SDA ning need ühendatakse I2C kaabli abil.
Neid seoseid on näidatud ülaltoodud piltidel.
3. samm: temperatuuri mõõtmise kood:
Vaarika pi kasutamise eeliseks on see, et saate paindlikult programmeerimiskeelt, milles soovite plaati programmeerida, et andurit sellega liidestada. Kasutades selle plaadi eeliseid, demonstreerime siin selle programmeerimist Java -s. LM75BIMM -i java koodi saab alla laadida meie githubi kogukonnast, mis on Control Everything Community.
Lisaks kasutajate mugavusele selgitame koodi ka siin:
Kodeerimise esimese sammuna peate java korral alla laadima raamatukogu pi4j, kuna see raamatukogu toetab koodis kasutatavaid funktsioone. Niisiis, teegi allalaadimiseks võite külastada järgmist linki:
pi4j.com/install.html
Siit saate kopeerida ka selle anduri töötava java koodi:
import com.pi4j.io.i2c. I2CBus;
import com.pi4j.io.i2c. I2CDevice;
import com.pi4j.io.i2c. I2CFactory;
importige java.io. IOException;
avalik klass LM75BIMM
{
public static void main (String args ) viskab Erand
{
// Loo I2C siin
I2CBus Bus = I2CFactory.getInstance (I2CBus. BUS_1);
// Hangi I2C seade, LM75BIMM I2C aadress on 0x49 (73)
I2CDevice seade = Bus.getDevice (0x49);
// Valige konfiguratsiooniregister
// Pidev teisendusrežiim, normaalne töö
device.write (0x01, (bait) 0x00);
Niit.unenägu (500);
// Lugege 2 baiti andmeid aadressilt 0x00 (0)
// temp msb, temp lsb
bait andmed = uus bait [2];
device.read (0x00, andmed, 0, 2);
// Teisendage andmed 9-bitisteks
int temp = ((andmed [0] & 0xFF) * 256 + (andmed [1] & 0x80)) / 128;
kui (temp> 255)
{
temp -= 512;
}
kahekordne cTemp = temp * 0,5;
kahekordne fTemp = cTemp * 1,8 + 32;
// Andmete väljastamine ekraanile
System.out.printf ("Temperatuur Celsisus: %.2f C %n", cTemp);
System.out.printf ("Temperatuur Fahrenheiti järgi: %.2f F %n", fTemp);
}
}
Teek, mis hõlbustab i2c suhtlust anduri ja plaadi vahel, on pi4j, selle erinevad paketid I2CBus, I2CDevice ja I2CFactory aitavad ühendust luua.
import com.pi4j.io.i2c. I2CBus;
import com.pi4j.io.i2c. I2CDevice;
import com.pi4j.io.i2c. I2CFactory;
importige java.io. IOException;
Kirjutamise () ja lugemise () funktsioone kasutatakse andurile teatud käskude kirjutamiseks, et see töötaks teatud režiimis ja loeks vastavalt anduri väljundit.
Anduri väljund on näidatud ka ülaltoodud pildil.
4. samm: rakendused:
LM75BIMM sobib ideaalselt paljudeks rakendusteks, sealhulgas tugijaamade, elektrooniliste testimisseadmete, kontorielektroonika, personaalarvutite või muude süsteemide jaoks, kus temperatuuri jälgimine on jõudluse seisukohalt kriitiline. Seetõttu on sellel anduril paljudes kõrge temperatuuritundlikkusega süsteemides keskne roll.
Soovitan:
Temperatuuri mõõtmine AD7416ARZ ja Raspberry Pi abil: 4 sammu
Temperatuuri mõõtmine AD7416ARZ ja Raspberry Pi abil: AD7416ARZ on 10-bitine temperatuuriandur, millel on neli ühe kanaliga analoog-digitaalmuundurit ja sisseehitatud temperatuuriandur. Osade temperatuuriandurile pääseb juurde multiplekserkanalite kaudu. See ülitäpne temperatuur
Temperatuuri mõõtmine LM75BIMM ja Arduino Nano abil: 4 sammu
Temperatuuri mõõtmine LM75BIMM ja Arduino Nano abil: LM75BIMM on digitaalne temperatuuriandur, mis on ühendatud termilise valvekoeraga ja millel on kahe juhtmega liides, mis toetab selle tööd kuni 400 kHz. Sellel on programmeeritava piiri ja hüsteriga väljund üle temperatuuri. Selles õpetuses on liides
Temperatuuri mõõtmine STS21 ja Raspberry Pi abil: 4 sammu
Temperatuuri mõõtmine STS21 ja Raspberry Pi abil: STS21 digitaalne temperatuuriandur pakub suurepärast jõudlust ja ruumi säästvat jalajälge. See pakub kalibreeritud, lineariseeritud signaale digitaalses I2C -vormingus. Selle anduri valmistamine põhineb CMOSens tehnoloogial, mis omistab suurepärase
Niiskuse ja temperatuuri mõõtmine HTS221 ja Raspberry Pi abil: 4 sammu
Niiskuse ja temperatuuri mõõtmine HTS221 ja Raspberry Pi abil: HTS221 on ülikompaktne mahtuvuslik digitaalne andur suhtelise niiskuse ja temperatuuri jaoks. See sisaldab andurit ja segasignaalirakenduse spetsiifilist integraallülitust (ASIC), mis pakub mõõtmisteavet digitaalse jada kaudu
Temperatuuri mõõtmine LM75BIMM ja osakeste footoni abil: 4 sammu
Temperatuuri mõõtmine LM75BIMM ja osakeste fotonite abil: LM75BIMM on digitaalne temperatuuriandur, mis on ühendatud termilise valvekoeraga ja millel on kahe juhtmega liides, mis toetab selle tööd kuni 400 kHz. Sellel on programmeeritava piiri ja hüsteriga väljund üle temperatuuri. Selles õpetuses on liides