Sisukord:
- Samm: vajalik riistvara:
- 2. samm: riistvara ühendamine:
- 3. samm: temperatuuri mõõtmise kood:
- 4. samm: rakendused:
Video: Temperatuuri mõõtmine STS21 ja Raspberry Pi abil: 4 sammu
2024 Autor: John Day | [email protected]. Viimati modifitseeritud: 2024-01-30 08:47
STS21 digitaalne temperatuuriandur pakub suurepärast jõudlust ja ruumi säästvat jalajälge. See pakub kalibreeritud, lineariseeritud signaale digitaalses I2C -vormingus. Selle anduri valmistamine põhineb CMOSens tehnoloogial, mis omistab STS21 suurepärase jõudluse ja töökindluse. STS21 eraldusvõimet saab käsuga muuta, tühja aku saab tuvastada ja kontrollsumma aitab parandada side usaldusväärsust.
Selles õpetuses demonstreeritakse STS21 andurimooduli liidestumist vaarika pi -ga ja illustreeritud on ka selle programmeerimist python -keele abil. Temperatuuri väärtuste lugemiseks oleme kasutanud vaarika pi koos I2c adapteriga. See I2C adapter muudab ühenduse andurimooduliga lihtsaks ja usaldusväärsemaks.
Samm: vajalik riistvara:
Eesmärgi saavutamiseks vajalikud materjalid sisaldavad järgmisi riistvarakomponente:
1. STS21
2. Vaarika pi
3. I2C kaabel
4. I2C Shield vaarika pi jaoks
5. Etherneti kaabel
2. samm: riistvara ühendamine:
Riistvara ühendamise jaotis selgitab põhimõtteliselt anduri ja vaarika pi vahel vajalikke juhtmestiku ühendusi. Soovitud väljundi mis tahes süsteemiga töötamisel on põhivajadus õigete ühenduste tagamine. Seega on vajalikud ühendused järgmised:
STS21 töötab üle I2C. Siin on näide ühendusskeemist, mis näitab, kuidas anduri iga liidest ühendada.
Valmis plaat on konfigureeritud I2C liidese jaoks, seega soovitame seda ühendamist kasutada, kui olete muidu agnostik. Kõik, mida vajate, on neli juhtmest!
Vaja on ainult nelja ühendust Vcc, Gnd, SCL ja SDA ning need ühendatakse I2C kaabli abil.
Neid seoseid on näidatud ülaltoodud piltidel.
3. samm: temperatuuri mõõtmise kood:
Vaarika pi kasutamise eeliseks on see, et saate paindlikult programmeerimiskeelt, milles soovite plaati programmeerida, et andurit sellega liidestada. Kasutades selle plaadi eeliseid, demonstreerime siin selle programmeerimist pythonis. Python on üks lihtsamaid programmeerimiskeeli, millel on lihtsaim süntaks. STS21 püütoni koodi saab alla laadida meie githubi kogukonnast, mis on DCUBE Store Community.
Lisaks kasutajate mugavusele selgitame koodi ka siin:
Kodeerimise esimese sammuna peate pythoni korral alla laadima SMBusi teegi, kuna see raamatukogu toetab koodis kasutatavaid funktsioone. Niisiis, teegi allalaadimiseks võite külastada järgmist linki:
pypi.python.org/pypi/smbus-cffi/0.5.1
Töökoodi saate kopeerida ka siit:
import smbus
impordi aeg
# Hankige I2C siinus = smbus. SMBus (1)
# STS21 aadress, 0x4A (74)
# Valige käsk
# 0xF3 (243) Temperatuuri mõõtmine režiimis NO HOLD
bus.write_byte (0x4A, 0xF3)
aeg. uni (0,5)
# STS21 aadress, 0x4A (74)
# Lugege andmeid tagasi, 2 baiti, kõigepealt MSB
andmed0 = bus.read_byte (0x4A)
andmed1 = bus.read_byte (0x4A)
# Teisendage andmed
temp = (andmed0 * 256 + andmed1) & 0xFFFC
cTemp = -46,85 + (175,72 * temp / 65536,0)
fTemp = cTemp * 1,8 + 32
# Väljastage andmed ekraanile
print "Temperatuur Celsiuse järgi on: %.2f C" %cTemp
print "Temperatuur Fahrenheiti järgi on: %.2f F" %fTemp
Kood käivitatakse järgmise käsu abil:
$> python STS21.py gt; python STS21.py
Anduri väljund on näidatud ülaltoodud pildil kasutaja jaoks.
4. samm: rakendused:
Digitaalset temperatuuriandurit STS21 saab kasutada süsteemides, mis nõuavad suure täpsusega temperatuuri jälgimist. Seda saab integreerida erinevatesse arvutiseadmetesse, meditsiiniseadmetesse ja tööstuslikele juhtimissüsteemidele, mis nõuavad temperatuuri täpset mõõtmist.
Soovitan:
Temperatuuri mõõtmine AD7416ARZ ja Raspberry Pi abil: 4 sammu
Temperatuuri mõõtmine AD7416ARZ ja Raspberry Pi abil: AD7416ARZ on 10-bitine temperatuuriandur, millel on neli ühe kanaliga analoog-digitaalmuundurit ja sisseehitatud temperatuuriandur. Osade temperatuuriandurile pääseb juurde multiplekserkanalite kaudu. See ülitäpne temperatuur
Temperatuuri mõõtmine STS21 ja Arduino Nano abil: 4 sammu
Temperatuuri mõõtmine STS21 ja Arduino Nano abil: STS21 digitaalne temperatuuriandur pakub suurepärast jõudlust ja ruumi säästvat jalajälge. See pakub kalibreeritud, lineariseeritud signaale digitaalses I2C -vormingus. Selle anduri valmistamine põhineb CMOSens tehnoloogial, mis omistab suurepärase
Temperatuuri mõõtmine STS21 ja osakeste footoni abil: 4 sammu
Temperatuuri mõõtmine STS21 ja osakeste fotonite abil: STS21 digitaalne temperatuuriandur pakub suurepärast jõudlust ja ruumi säästvat jalajälge. See pakub kalibreeritud, lineariseeritud signaale digitaalses I2C -vormingus. Selle anduri valmistamine põhineb CMOSens tehnoloogial, mis omistab suurepärase
Niiskuse ja temperatuuri mõõtmine HTS221 ja Raspberry Pi abil: 4 sammu
Niiskuse ja temperatuuri mõõtmine HTS221 ja Raspberry Pi abil: HTS221 on ülikompaktne mahtuvuslik digitaalne andur suhtelise niiskuse ja temperatuuri jaoks. See sisaldab andurit ja segasignaalirakenduse spetsiifilist integraallülitust (ASIC), mis pakub mõõtmisteavet digitaalse jada kaudu
Temperatuuri mõõtmine TMP112 ja Raspberry Pi abil: 4 sammu
Temperatuuri mõõtmine TMP112 ja Raspberry Pi abil: TMP112 suure täpsusega, väikese energiatarbega digitaalne temperatuurianduri I2C MINI moodul. TMP112 on ideaalne pikemaajaliseks temperatuuri mõõtmiseks. Selle seadme täpsus on ± 0,5 ° C, ilma et oleks vaja kalibreerimist või välise komponendi signaali konditsioneerimist