Sisukord:
2025 Autor: John Day | [email protected]. Viimati modifitseeritud: 2025-01-23 14:40
CPS120 on kõrge kvaliteediga ja madala hinnaga mahtuvuslik absoluutse rõhu andur, millel on täielikult kompenseeritud väljund. See tarbib väga vähem energiat ja sisaldab üliväikest mikroelektromehaanilist andurit (MEMS) rõhu mõõtmiseks. See sisaldab ka sigma-delta-põhist ADC-d, et täita kompenseeritud väljundi nõue.
Selles õpetuses on näidatud CPS120 andurimooduli liidestamist vaarika pi -ga ja illustreeritud on ka selle programmeerimine Java keelt kasutades. Rõhuväärtuste lugemiseks oleme kasutanud vaarika pi koos I2c adapteriga. See I2C adapter muudab ühenduse andurimooduliga lihtsaks ja usaldusväärsemaks.
Samm: vajalik riistvara:
Eesmärgi saavutamiseks vajalikud materjalid sisaldavad järgmisi riistvarakomponente:
1. CPS120
2. Vaarika Pi
3. I2C kaabel
4. I2C kilp Raspberry Pi jaoks
5. Etherneti kaabel
2. samm: riistvara ühendamine:
Riistvara ühendamise jaotis selgitab põhimõtteliselt anduri ja vaarika pi vahel vajalikke juhtmestiku ühendusi. Soovitud väljundi mis tahes süsteemiga töötamisel on põhivajadus õigete ühenduste tagamine. Seega on vajalikud ühendused järgmised:
CPS120 töötab üle I2C. Siin on näide ühendusskeemist, mis näitab, kuidas anduri iga liidest ühendada.
Valmis plaat on konfigureeritud I2C liidese jaoks, seega soovitame seda ühendamist kasutada, kui olete muidu agnostik. Kõik, mida vajate, on neli juhtmest!
Vaja on ainult nelja ühendust Vcc, Gnd, SCL ja SDA ning need ühendatakse I2C kaabli abil.
Neid seoseid on näidatud ülaltoodud piltidel.
3. samm: rõhu mõõtmise kood:
Vaarika pi kasutamise eeliseks on see, et saate paindlikult programmeerida keelt, milles soovite plaati programmeerida, et andurit sellega liidestada. Kasutades selle plaadi eeliseid, demonstreerime siin, et see on Java -programmeerimine. CPS120 java koodi saab alla laadida meie GitHubi kogukonnast, mis on Dcube Store.
Lisaks kasutajate mugavusele selgitame koodi ka siin: Kodeerimise esimese sammuna peate java korral alla laadima raamatukogu pi4j, kuna see teek toetab koodis kasutatavaid funktsioone. Niisiis, teegi allalaadimiseks võite külastada järgmist linki:
pi4j.com/install.html
Siit saate kopeerida ka selle anduri töötava java koodi:
import com.pi4j.io.i2c. I2CBus;
import com.pi4j.io.i2c. I2CDevice;
import com.pi4j.io.i2c. I2CFactory;
importige java.io. IOException;
avalik klass CPS120
{
public static void main (String args ) viskab Erand
{
// Loo I2CBus
I2CBus siin = I2CFactory.getInstance (I2CBus. BUS_1);
// Hangi I2C seade, CPS120 I2C aadress on 0x28 (40)
I2CDseadme seade = buss.getDevice (0x28);
// Start käsu saatmine
device.write (0x28, (bait) 0x80);
Niit.unenägu (800);
// Lugege 2 baiti andmeid, kõigepealt msb
bait andmed = uus bait [2];
device.read (andmed, 0, 2);
// Teisenda andmed kPa -ks
topeltrõhk = (((andmed [0] & 0x3F) * 256 + andmed [1]) * (90/16384,00)) + 30;
// Andmete väljastamine ekraanile
System.out.printf ("Rõhk on: %.2f kPa %n", rõhk);
}
}
Teek, mis hõlbustab i2c suhtlust anduri ja plaadi vahel, on pi4j, selle erinevad paketid I2CBus, I2CDevice ja I2CFactory aitavad ühendust luua.
import com.pi4j.io.i2c. I2CBus; import com.pi4j.io.i2c. I2CDevice; import com.pi4j.io.i2c. I2CFactory; importige java.io. IOException;
Kirjutamise () ja lugemise () funktsioone kasutatakse andurile teatud käskude kirjutamiseks, et see töötaks teatud režiimis ja loeks vastavalt anduri väljundit.
Anduri väljund on näidatud ka ülaltoodud pildil.
4. samm: rakendused:
CPS120 -l on mitmesuguseid rakendusi. Seda saab kasutada kaasaskantavates ja statsionaarsetes baromeetrites, kõrgusemõõtjates jne. Rõhk on ilmastikutingimuste määramisel oluline parameeter, arvestades, et seda andurit saab paigaldada ka ilmajaamadesse. Seda saab lisada nii õhujuhtimissüsteemidesse kui ka vaakumsüsteemidesse.
Soovitan:
M5STACK Temperatuuri, niiskuse ja rõhu kuvamine M5StickC ESP32 -l Visuino abil - lihtne teha: 6 sammu
M5STACK Temperatuuri, niiskuse ja rõhu kuvamine M5StickC ESP32 -l Visuino abil - lihtne teha: Selles õpetuses õpime, kuidas programmeerida ESP32 M5Stack StickC koos Arduino IDE ja Visuinoga temperatuuri, niiskuse ja rõhu kuvamiseks ENV anduri abil (DHT12, BMP280, BMM150)
Niiskuse, rõhu ja temperatuuri arvutamine BME280 ja footonite liidese abil: 6 sammu
Niiskuse, rõhu ja temperatuuri arvutamine BME280 ja fotonite liidese abil: Me puutume kokku erinevate projektidega, mis nõuavad temperatuuri, rõhu ja niiskuse jälgimist. Seega mõistame, et need parameetrid mängivad tegelikult olulist rolli süsteemi töö efektiivsuse hindamisel erinevates atmosfääritingimustes
Rõhu mõõtmine CPS120 ja Arduino Nano abil: 4 sammu
Rõhu mõõtmine CPS120 ja Arduino Nano abil: CPS120 on kõrge kvaliteediga ja madala hinnaga mahtuvuslik absoluutrõhu andur, millel on täielikult kompenseeritud väljund. See tarbib väga vähem energiat ja sisaldab üliväikest mikroelektromehaanilist andurit (MEMS) rõhu mõõtmiseks. Sigma-delta baasil
Rõhu reguleerimine Arduino abil: 4 sammu
Rõhu kontroll Arduino abil: See on minu esimene arduino projekt, mille olin oma ülikooli projektina lõpetanud. See projekt peaks olema lennukites saadaval oleva õhurõhu reguleerimisseadme mudel. Projekti partnerid: -Mjed Aleytouni
Rõhu mõõtmine CPS120 ja osakeste footoni abil: 4 sammu
Rõhu mõõtmine CPS120 ja osakeste fotonite abil: CPS120 on kõrge kvaliteediga ja odava hinnaga mahtuvuslik absoluutrõhu andur, millel on täielikult kompenseeritud väljund. See tarbib väga vähem energiat ja sisaldab üliväikest mikroelektromehaanilist andurit (MEMS) rõhu mõõtmiseks. Sigma-delta baasil